WS #18 - Ionnidis - most published research is false

Math 150, Jo Hardin

Monday, April 14, 2025

Your Name: _

Names of people you worked with: _____

What are you most excited about doing this summer?

Task: As defined in Ioannidis, "Why Most Published Research Findings are False" R:

 $R = \frac{\# \text{ true relationships}}{\# \text{ null relationships}}$ in the population

TRUE:

$$P(\text{study is true}) = \frac{\# \text{ true relationships}}{\# \text{ total}}$$
$$= \frac{\# \text{ true relationships}}{\# \text{ true} + \# \text{ null}}$$
$$= \frac{R(\# \text{ null relationships})}{R (\# \text{ null}) + \# \text{ null}}$$
$$= \frac{R}{R+1}$$

size:

 $\begin{array}{rcl} \alpha & = & P(\mbox{type I error}) \\ & = & P(\mbox{reject } H_0 | H_0 \mbox{ true}) \end{array}$

power:

$$\begin{array}{rcl} 1-\beta &=& P(\text{reject } H_0 | H_0 \text{ false}) \\ \beta &=& P(\text{type II error}) \\ &=& P(\text{not reject } H_0 | H_0 \text{ false}) \end{array}$$

	True relationship		
Research Finding	Yes	No	Total
Yes	5.	4.	7.
No	3.	6.	8.
Total	1.	2.	С

tests:

c = # of tests run

Fill in the table (hint: I put numbers to suggest what I think is the easiest order for filling in the table). Find PPV (positive predictive value) = probability that the positive result is actually true.

Solution:

	True relationship		
Research Finding	Yes	No	Total
Yes	$c(1-\beta)R/(R+1)$	$c\alpha/(R+1)$	$c(R+\alpha-\beta R)/(R+1)$
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1-\alpha+\beta R)/(R+1)$
Total	cR/(R+1)	c/(R+1)	С

$$PPV = \frac{c(1-\beta)R/(R+1)}{c(1-\beta)R/(R+1) + c\alpha/(R+1)}$$
$$= \frac{c(1-\beta)R}{c(1-\beta)R + c\alpha}$$
$$= \frac{(1-\beta)R}{(1-\beta)R + \alpha}$$
$$= \frac{1}{1+\alpha/(1-\beta)R}$$
$$PPV > 0.5 \text{ more likely true}$$

$$\inf (1-\beta)R > (R-\beta R+\alpha)0.5$$

$$(1-\beta)R0.5 > \alpha 0.5$$

$$(1-\beta)R > \alpha$$

PPV	<	0.5 more likely false
iff $(1-\beta)R$	<	α