

# WS #7 - OR in logistic regression

Math 150, Jo Hardin

Friday, February 13, 2026

Your Name: \_\_\_\_\_

Names of people you worked with: \_\_\_\_\_

What is your favorite type of donut?

**Task:**

1. Consider the linear regression model. Solve for  $\beta_1$  as a function of  $E[Y|x]$  and  $E[Y|x+1]$ . Write down the meaning of  $\beta_1$  in words. (No cause!)

$$E[Y|x] = \beta_0 + \beta_1 \cdot x$$

2. Consider the logistic regression model. Solve for  $\beta_1$  as a function of  $E[Y|x] = p(x)$  and  $E[Y|x+1] = p(x+1)$  (without the logit function). Write down the meaning of  $\beta_1$  in words.

$$\text{logit}(p(x)) = \beta_0 + \beta_1 \cdot x$$

**Solution:**

1. To solve for  $\beta_1$  we find the difference in expected values:

$$E[Y|x+1] - E[Y|x] = (\beta_0 + \beta_1 \cdot (x+1)) - (\beta_0 + \beta_1 \cdot (x)) = \beta_1$$

For each additional unit of  $x$ , the expected value of  $Y$  changes by  $\beta_1$ .

If  $\beta_1 = 3$  we say, for each additional unit of  $x$  we predict the value of  $Y$  to be 3 points higher.

2. To solve for  $\beta_1$  we find the difference in the logit functions:

$$\text{logit}(p(x+1)) - \text{logit}(p(x)) = (\beta_0 + \beta_1 \cdot (x+1)) - (\beta_0 + \beta_1 \cdot (x)) = \beta_1$$

However, we need  $\beta_1$  as a function of  $p(x)$  and  $p(x+1)$ . Recall that

$$\text{logit}(p(x)) = \ln \left( \frac{p(x)}{1-p(x)} \right)$$

$$\ln \left( \frac{p(x+1)}{1-p(x+1)} \right) - \ln \left( \frac{p(x)}{1-p(x)} \right) = \beta_1$$

$$\beta_1 = \ln \left( \frac{\frac{p(x+1)}{1-p(x+1)}}{\frac{p(x)}{1-p(x)}} \right)$$

That is,  $\beta_1$  represents the natural log of the odds ratio for a one unit increase in  $x$ .  $e^{\beta_1}$  is the odds ratio for a one unit increase in  $x$ .

If  $e^{\beta_1} = 3$  we say that for each additional unit of  $x$ , the odds of success are 3-fold higher.