Your Name: _____

Names of people you worked with: _____

- 1. What are you most excited about doing this summer?
- 2. What are you considering working on for the "extra" part of the final class project?
- 3. As defined in Ioannidis, "Why Most Published Research Findings are False"
 - R

$$R = \frac{\# \text{ true relationships}}{\# \text{ null relationships}} \quad \text{in the population}$$

TRUE

$$P(\text{study is true}) = \frac{\# \text{ true relationships}}{\# \text{ total}}$$
$$= \frac{\# \text{ true relationships}}{\# \text{ true} + \# \text{ null}}$$
$$= \frac{R(\# \text{ null relationships})}{R (\# \text{ null}) + \# \text{ null}}$$
$$= \frac{R}{R+1}$$

size

$$\alpha = P(\text{type I error})$$
$$= P(\text{reject } H_0 | H_0 \text{ true})$$

power

$$1 - \beta = P(\text{reject } H_0 | H_0 \text{ false})$$

$$\beta = P(\text{type II error})$$

$$= P(\text{not reject } H_0 | H_0 \text{ false})$$

 \mathbf{tests}

c = # of tests run

Fill in the table. Find PPV (positive predictive value) = probability that the positive result is actually true.

	True relationship		
Research Finding	Yes	No	Total
Yes			
No			
Total			c

3. Solution:

	True relationship		
Research Finding	Yes	No	Total
Yes	$c(1-\beta)R/(R+1)$	$c\alpha/(R+1)$	$c(R+\alpha-\beta R)/(R+1)$
No	$c\beta R/(R+1)$	$c(1-\alpha)/(R+1)$	$c(1 - \alpha + \beta R)/(R + 1)$
Total	cR/(R+1)	c/(R+1)	c

$$PPV = \frac{c(1-\beta)R/(R+1)}{c(1-\beta)R/(R+1) + c\alpha/(R+1)}$$
$$= \frac{c(1-\beta)R}{c(1-\beta)R + c\alpha}$$
$$= \frac{(1-\beta)R}{(1-\beta)R + \alpha}$$
$$= \frac{1}{1+\alpha/(1-\beta)R}$$
$$PPV > 0.5 \text{ more likely true}$$
$$\text{iff } (1-\beta)R > (R-\beta R + \alpha)0.5$$
$$(1-\beta)R0.5 > \alpha0.5$$
$$(1-\beta)R > \alpha$$
$$PPV < 0.5 \text{ more likely false}$$

$$\inf (1-\beta)R < \alpha$$