Your Name: $\qquad$

Names of people you worked with: $\qquad$

Task: You remember from somewhere (maybe just this week) that we can approximate the distribution of the sample ln odds ratio using:

$$
\ln (\widehat{O R}) \stackrel{\operatorname{approx}}{\sim} N\left(\ln (O R), \sqrt{\frac{1}{n_{1} \hat{p}_{1}\left(1-\hat{p}_{1}\right)}+\frac{1}{n_{2} \hat{p}_{2}\left(1-\hat{p}_{2}\right)}}\right)
$$

Which leads you to the following $95 \%$ CI for the true $\ln (O R)$ :

$$
\left(\ln (\widehat{O R})-1.96 \cdot \sqrt{\frac{1}{n_{1} \hat{p}_{1}\left(1-\hat{p}_{1}\right)}+\frac{1}{n_{2} \hat{p}_{2}\left(1-\hat{p}_{2}\right)}}, \ln (\widehat{O R})+1.96 \cdot \sqrt{\frac{1}{n_{1} \hat{p}_{1}\left(1-\hat{p}_{1}\right)}+\frac{1}{n_{2} \hat{p}_{2}\left(1-\hat{p}_{2}\right)}}\right)
$$

Filling in the pieces, the above $95 \%$ CI for the true value of $\ln (O R)$ (the parameter) is $(2.71,4.02)$.
Argue that $\left(e^{2.71}, e^{4.02}\right)$ is a $95 \%$ confidence interval for the true value of $O R$ by making the following argument (show your work):

1. If you happen to have gotten one of the $95 \%$ of samples that lead to a CI which captures the true value, then the first CI capturing the true $\ln (O R)$ implies that the second interval must capture the true $O R$.
2. If you were unlucky and happened to have gotten one of the $5 \%$ of samples which do not lead to a capture of the true value, then the first CI will not capture $\ln (O R)$ which implies that the second interval will not capture the true $O R$.
3. Thus, if the first interval (the one for the $\ln (O R)$ ) has a capture rate of $95 \%$, then the second interval (where the endpoints are exponentiated) must also have a capture rate for $O R$ of $95 \%$.

## Solution:

1. If I happen to have gotten a sample with endpoints that capture the true $\ln (O R)$, then:

$$
\begin{aligned}
2.71 & \leq \ln (O R) \\
e^{2.71} & \leq e^{\ln (O R)} \leq e^{4.02} \\
e^{2.71} \leq O R & \leq e^{4.02}
\end{aligned}
$$

Therefore if $\ln (O R) \in(2.71,4.02)$ then $O R \in\left(e^{2.71}, e^{4.02}\right)$.
2. Without loss of generality, let's say the interval is completely below $\ln (O R)$ (same argument holds if the interval is completely above $\ln (O R)$ ).

$$
\begin{array}{r}
2.71<4.02 \leq \ln (O R) \\
e^{2.71}<e^{4.02} \leq e^{\ln (O R)} \\
e^{2.71}<e^{4.02} \leq O R
\end{array}
$$

Therefore if $\ln (O R) \notin(2.71,4.02)$ then $O R \notin\left(e^{2.71}, e^{4.02}\right)$.
3. A $95 \%$ confidence interval describes a procedure by which a range of values is calculated. If the process captures the true parameter in $95 \%$ of samples and not in $5 \%$ of samples, then it is a valid $95 \%$ confidence interval. As described above, the process by which we exponentiate the endpoints creates a valid $95 \%$ confidence interval.

